MATHS CLASS X Continuation

CHAPTER 5 (QUADRATIC EQUATIONS IN ONE VARIABLE)

General direction for the students :-Whatever be the questions solved , everything must be copied in the Maths Copy and then do the Home work in the same Copy.

EXERCISE 5.4

Q5 i) $x^2 + 4kx + (k^2 - k + 2) = 0$

We know here Discriminant $D = b^2 - 4ac = 0$

$$\Rightarrow (4k)^2 - 4 \cdot 1(k^2 - k + 2) = 0$$

$$\Rightarrow 12k^2 + 4k - 8 = 0$$

$$\Rightarrow 4(3k^2 + k - 2) = 0$$

$$\Rightarrow 3k^2 + k - 2 = 0$$

$$\Rightarrow (k + 1)(3k - 2) = 0$$

$$\Rightarrow k = -1, \frac{2}{3}$$

Q11. $x^2 + kx + 4 = 0$

A/Q
$$b^2 - 4ac \ge 0$$

$$\Rightarrow k^2 - 4.1.4 \ge 0$$

$$\Rightarrow (k-4)(k+4) \ge 0$$
 note the step

Critical points -4,4

By Method of interval

 \Rightarrow The least positive value of k=4

HOME WORK: Remaining questions from the Exercise 5.4

EXPERIMENT NO.2

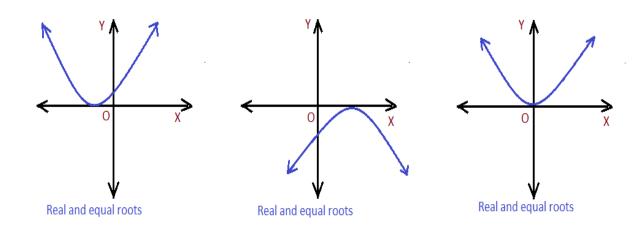
Points to remember.

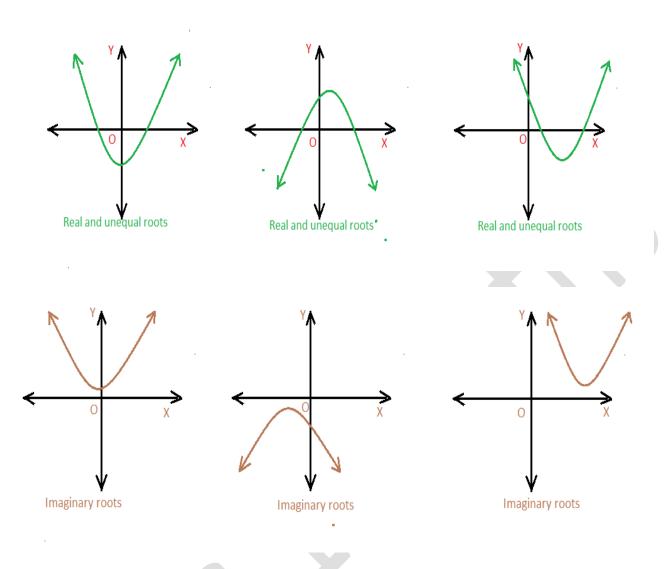
*Read and understand the experiment.

*In the Maths Practical Copy write down AIM, MATERIAL REQUIRED, METHODOLOGY, TABULAR COLUMN and CONCLUSION on the ruled page. DIAGRAM and CALCULATION on the plane page.

*Follow the PROCEDURE properly to get the correct conclusion.

* All the three graph papers must be attached to the Maths lab copy properly.


AIM: To determine the nature of roots of quadratic equations graphically and also find the real roots from the graph .


MATERIAL REQUIRED: 1) Three graph papers 2) Ruler & Pencil 3) Three quadratic functions. **METHODOLOGY:**-

i) If the graph of the quadratic function touches the X-axis, then the corresponding quadratic equation have Real and Equal roots.

ii) If the graph of the quadratic function Does not touches the X-axis , then the corresponding quadratic equation have Imaginary roots.

iii) If the graph of the quadratic function intersects the X-axis , then the corresponding quadratic equation have Real and Unequal roots.

PROCEDURE: Follow all the steps below in order

Step 1. Select any one equation from each set given bel	ow.
---	-----

1 st set	2 nd set	3 rd set
$y = x^2 - 2x + 1$	$y = x^2 + x - 6$	$y = x^2 + 2x + 2$
$y = x^2 + 2x + 1$	$y = x^2 - x - 6$	$y = x^2 - 2x + 2$
$y = x^2 - 4x + 4$	$y = x^2 - 3x - 4$	$y = x^2 + 4x + 5$
$y = -x^2 + 4x - 4$	$y = x^2 + 3x - 4$	$y = x^2 - 4x + 5$
$y = x^2 + 6x + 9$	$y = x^2 + 4x - 5$	$y = -x^2 + 2x - 2$
etc	etc	etc

Step 2. Find the values of 'y' when $x = 0,1,-1,2,-2,3, -3, \dots$ for each equation.

Step 3. Plot the points of each equation in different graph sheets.

Step 4. Connect the points by a smooth curve .

Step 5. Observe the graph .If the curve touches or intersects X-axis at any point , then corresponding value(s) of X is the roots of the equation.

CALCULATION:

1stequation , y = -----

х	0	1	-1	2	-2	3	-3	4	-4	5	-5	6
У												

2ndequation , y = -----

[Х	0	1	-1	2	-2	3	-3	4	-4	5	-5	6
	у												

3rd equation, y = ------

Х	0	1	-1	2	-2	3	-3	4	-4	5	-5	6	
У													

CONCLUSION:

1) The equation------has real & distinct roots and the roots are ------& -------

2)The equation ------has equal roots and the roots are-----&-----

3) The equation -----has no real roots.